A Process for Development of Calcined Bauxite from Ferruginous Bauxite

Pravin Bhukte¹, Gopal Daware², Tejas Bhosale³ and Anupam Agnihotri⁴

Principal Scientist
Scientific assistant-II

3. Senior Research Fellow

4. Director

Jawaharlal Nehru Aluminium Research Development & Design Centre (JNARDDC),

Nagpur – Maharashtra, India

Corresponding author: pgbhukte@jnarddc.gov.in / pg_bhukte@yahoo.com

Abstract

In India, the resources of high-grade bauxite suitable for non-metallurgical applications (refractive, abrasive, chemical) are very limited. In general, calcined bauxite is manufactured from high alumina, low iron bauxite. The specification required is very stringent concerning chemico-mineralogical composition. The bauxite should contain low iron oxide ($Fe_2O_3 < 5$ %) and high alumina ($Al_2O_3 > 55$ %). Due to this, India is importing specific quality bauxite to fulfill the requirement of the industry. For the present study, the ferruginous lateritic bauxite sample was collected from the Eastern ghat deposit and characterized. The bauxite contains high iron oxide (Fe₂O₃ 15–25 %) and moderate alumina (Al₂O₃ 44–49 %). Mineralogically it is gibbsitic in nature with hematite and alumino-goethite being dominant iron oxide minerals. JNARDDC has conducted experiments to convert ferruginous bauxite into high alumina bauxite. The beneficiation tests have been done for the elimination of iron oxide by physical and chemical methods. After the removal of iron oxide from raw bauxite, pellets/ granules of beneficiated low iron bauxite have been prepared. The calcination tests have been done on parameters such as temperature, residence time, and heating-cooling rate. The calcined granules (calcined bauxite) have been characterized and properties determined. It contains 82 % Al₂O₃ and 1.9 % Fe₂O₃ with corundum, and mullite as major minerals. The bulk density of developed calcined bauxite is 2.7-3 g/cm³. The results indicate that calcined bauxite can be developed from ferruginous bauxite. In this paper, an attempt is being made to highlight the status of high-grade bauxite resources in India and the process for the conversion of calcined bauxite from ferruginous bauxite.

Keywords: Ferruginous bauxite, Beneficiation, Calcination, Product, Calcined bauxite.

1. Introduction

India is endowed with 3 896 million tonnes of resources of Lateritic Bauxite deposits and placed 6th in terms of bauxite production. The geological and geomorphological features of lateritic bauxite deposits of India are unusual from region to region. The high-level deposits are located at an elevation of 900-1300 m above the mean sea level (e.g. Eastern ghat & coast, Chhattisgarh, Jharkhand, Western ghat, etc.) and on the other hand low level deposits with an altitude of 50-350 m above msl (Gujarat, coastal Maharashtra, West coast, etc.) [2, 7, 10, 14]. The characteristics of these deposits vary in context with geology, morphology, physical, chemical mineralogy and minor elements. JNARDDC have been evaluated lateritic bauxite deposits of India. The details of geological, morphological, chemical and mineralogical characteristics are given in Table-1 [5, 6, 7, 13, 15, 16]. In general, calcined bauxite is manufactured from high alumina low iron bauxite. In current scenario, the reserves of high-quality bauxite are limited and getting exhausted. The Eastern ghat (Odisha) bauxite is good quality (gibbsitic) with very less impurity as compared to other Indian bauxites. However, a major impurity is the presence of the high amount of iron oxide. An attempt is being made to convert the ferruginous bauxite into high alumina bauxite. The

successful conversion of ferruginous bauxite into calcined bauxite, resulting in reducing the import of bauxite.

Dogion State		Chemical &	
Region/ State	Parent rock		Remarks
	Nature of deposit	Mineralogical Feature	
Central India	Deccan Trap, Upper	Moderate to high alumina	Hard in nature (BWI 14–
Chhattisgarh	Rewa Sandstone,	and high titania	19 kWh/t)
and Madhya	Vindhyan Sandstone;	Mixed gibbsitic	Laterites occurs above the
Pradesh	Mostly high level, occurs	boehmitic and boehmitic	bauxite zone and or sandwiched
	as discontinuous lenses	type with 0.5-3%	in horizon
	or tabular bodies within	diaspore	Non-metallurgical grade bauxite
	laterite occurrences		deposits are small & unexplored
Maharashtra	Mainly Deccan Trap	Medium to high Al ₂ O ₃ ,	Hard in nature (BWI 14-
	Basalt	low silica, TiO_2 (2–6 %)	18 kWh/t)
	High level and low level	and devoid of CaO	Laterites underlain by bauxite
	(coastal) mostly pockets,	Gibbsitic (coastal) &	zone
	lenses and blanket type	mixed gibbsitic	High grade bauxite deposits
		boehmitic type (high	(non-metallurgical grade) are in
		level)	pockets
Jharkhand	Deccan trap, Granite	Moderate to high alumina	Hard in nature (BWI 16-
	gneiss; High level-	and high TiO ₂ (Mixed	18 kWh/t)
	blanket type	gibbsitic boehmitic type	High grade bauxite deposits
			(non-metallurgical grade) are
			small
Eastern ghat	Khondalite and	Moderate Al ₂ O ₃ (42-	Soft in nature (BWI 9–12 kwh/t)
& coast	Charnockite;	46 %), high Fe ₂ O ₃ (20-	Laterites occurs above bauxite
Odisha	high level lateritic type,	30 %), low silica (1–3 %)	zone
A. P.	which occur on plateau	& titanium	Mostly metallurgical grade; high
	tops as blanket covers	Fully Gibbsitic, minor	grade bauxites are in pockets
	-	amount of boehmite	Endowed with 70% of the total
			resources (India)
Gujarat	Deccan Trap basalt,	Kachchh - High Al ₂ O ₃ ,	Hard in nature (BWI 14-
5	argillaceous and	low SiO ₂ and CaO	19 kWh/t)
	calcareous sandstone and	Sabarkantha & Kheda	Reserves of high grade (plant
	Limestone. Low level	Low-moderate Al_2O_3 ,	grade-PG) bauxite are
	mainly pockety and	high TiO ₂ & moderate	exhausting. The resources of low
	boundary	CaO	to medium grade bauxite is
	5	Gibbsitic, with some	abundant.
		amount of boehmite &	
		diaspore	
Western	Charnockite, Sandstone	Medium Al ₂ O ₃ , at places	Moderate (BWI 13–16 kWh/t)
Ghats &	of Varkala and Quilon	high SiO ₂ , low TiO ₂ and	High grade bauxite is in pockets
Coast Kerala	formation; Low level	traces of CaO	
	(Coastal)	Gibbsitic, part of silica as	
	Pockets in laterite	quartz	
Karnataka	Deccan trap basalt,	Medium Al ₂ O ₃ , SiO ₂ low	Moderate to hard (BWI 13-
	Dharwarian meta	TiO ₂ and traces of CaO	17 kWh/t)
	sediments, Granite	Gibbsitic at places mixed	High grade bauxite exposed at
	gneiss; irregular lenses in	gibbsitic-boehmitic	some places
	the laterites		Ĩ
Tamil Nadu	Charnockite	Moderate alumina & high	Moderate (BWI 10-14 kWh/t)
	High level deposits	silica	x
		Gibbsite major mineral	
		5	

Table 1. Characteristics of lateritic bauxite deposits (India).

4. Conclusions

- In India, the high-grade bauxite deposits are small and scattered. The group of small deposits comprising of favorable Chemico -mineralogical, physical characteristics may be viable for utilization. The technological evaluation of the deposits are necessary to identify resources of high alumina low iron bauxite.
- Bauxite for non-metallurgical industries (calcination, refractory) meets very rigid physicochemical requirements and specifications particularly for constituents like alumina (Al₂O₃%) and iron oxide (Fe₂O₃%) compared to ore used for the metallurgical industry. The price of imported calcined bauxite varies depending on the quality and parameters. As far as Indian bauxite is concern, it may be more economical to find an indigenous source/option for complex mining and by using low -medium grade bauxite by adopting suitable beneficiation techniques. It is suggested to properly segregate both grades of bauxites while mining.
- The laboratory test results show that it is possible to produce high alumina low iron bauxite by integrated beneficiation processes. The studies indicate after beneficiation, the processed ferruginous ore could be used in the production of calcined bauxite.

5. Acknowledgement

The authors express their sincere gratitude to Dr Anupam Agnihotri, Director, JNARDDC for constant encouragement and grant for publishing this work. Their appreciation extends to the Science and Technology division of the Ministry of Mines, Government of India, for their sponsorship of the research projects. The authors wish to acknowledge and thank the dedicated staff members of JNARDDC for their diligent efforts in carrying out the essential laboratory work. They are deeply thankful to the esteemed members of the ICSOBA committee for their invaluable suggestions and constructive feedback during the review process.

6. References

- 1. Ashok Nandi., Can India provide enough bauxite to the growing alumina industry, *Minerals & Metals Review (MMR)* 2021, 31-37.
- 2. Bardossy, G. and Aleva G.J. J., *Lateritic Bauxite: Developments in Economic Geology*, 1990, pp. 27.
- 3. Bhukte P. G., & Puttewar S. P., Significance of grain size of Bauxite and Laterite during Beneficiation Technological improvements & market developments in Aluminium Industry with special reference to value added products of Bauxite, Alumina and Aluminium, *IBAAS-2014 Binder Vol, Section- (IBAAS-2014)*.
- 4. Hakimuddin Ali., Refractory Raw Material: Supply & Demand Scenario; A Strategic Analysis in Indian Context, *Indian minerals & markets forum*, 2019.
- 5. IBM, Indian Bureau of Mines -IBM, *Indian Mineral Yearbook 2021*, Part -III Mineral Reviews, 60th Edition, Bauxite, Advanced Release, Govt. of India, Ministry of Mines, 2022, pp. 1-13
- 6. JNARDDC, *Report on Bauxite Technical Data Bank Phase III (Western ghat deposits),* S & T, MoM, GOI, 2012.
- 7. JNARDDC, Report on Compilation of bauxite technical data bank (Gujarat, Jharkhand and Eastern Ghats), S & T, MoM, GOI, 2005.
- 8. JNARDDC, Report on De-ironing of eastern ghat bauxite, S & T, MoM, GOI, 2005
- 9. MRFR, Calcined Bauxite Market Research Report, 2023. <u>info@marketresearchfuture.com</u> <u>https://www.marketresearchfuture.com/reports/calcined-bauxite-market-10680</u>
- 10. P G Bhukte, et al., Beneficiation of low-grade Bauxite: A case study of Lateritic Bauxite of India, *Springer- Innovations in Sustainable Mining*, Balancing Environment, Ecology & Economy, 2020, 85-98.

- 11. P G Bhukte, et al., Beneficiation of low-grade Bauxite: A case study of Lateritic Bauxite of India, Springer, Innovations in Sustainable Mining, Balancing Environment, Ecology & amp, Economy; 2021, 85-98.
- 12. P. G. Bhukte et al., Effect of geological, mineralogical characteristics on grindability of bauxite: A case study of Indian Lateritic Bauxite deposits, *JOUR.GEOL.SOC.INDIA*, 2023, Vol-99, 55-60.
- 13. P. G. Bhukte, et al., Evaluation and beneficiation of Lateritic Bauxite deposits of India, *Journal of Geosciences Research*, 2017, Vol No 1, pp 251-256
- 14. P G Bhukte, et al., Geochemical, mineralogical and petrological characteristics of Lateritic Bauxite deposits formed on Deccan Trap Basalt with reference to high-level and coastal (low level) deposits of Maharashtra, *Journal Geological Society of India*, 2020, Vol.95, 587-598.
- 15. P G Bhukte, et al., Geotechnological evaluation of Lateritic Bauxite deposits by using Geospatial technology A case study of Chhattisgarh deposits, 27th International Conference on Non-ferrous Metals (ICNFM 2023) Tech 11, July 7-8, 2023 Ranchi, India
- 16. P.G. Bhukte, et al., Non-metallurgical Grade Bauxite Status & Future Prospects, 11th International Conference and Exhibition (IBAAS-JNARDDC 2022), Binder: Volume X, 212-223.
- 17. Pravin Bhukte, et al., Status of Lateritic Bauxite deposits of India for non-metallurgical applications, *Journal Indian Geological Congress, Vol.9, No.2*, 2017, 71-79.
- 18. Pravin Bhukte, et al., Technical assessment of lateritic bauxite a case study of high-level bauxite deposits in Maharashtra, *METAL ASIA-Aluminium Usages & Downstream Business-The Indian Scenario*, 2020, Vol 21, No 3-4,50-56.
- 19. Pravin G. Bhukte, et al., Upgradation of low-grade bauxite- A case study of Mainpat deposit (Chhattisgarh, India), *International Aluminium Conference (IAC 2023)* organized by AAI, Vedanta and Caproate Monitor, February 09-10, 2023, Jharsuguda, Odisha, pp-40.
- 20. ROSKILL, Non-Metallurgical Bauxite; Applications & Markets, 25th Alumina and Bauxite Conf, Miami, 2019.
- 21. USGS, (2023). <u>https://www.usgs.gov/centers/national-minerals-information-center/historical-statistics-mineral-and-material-commodities#bauxiteandalumina</u>
- 22. <u>www.earthminerals.com/calcined-bauxite</u>
- 23. <u>www.baud.com</u>
- 24. <u>www.valbaux.com</u>